Sequencing by hybridization: an enhanced crossover operator for a hybrid genetic algorithm

نویسندگان

  • Carlos A. Brizuela
  • Luis C. González-Gurrola
  • Andrei Tchernykh
  • Denis Trystram
چکیده

This paper presents a genetic algorithm for an important computational biology problem. The problem appears in the computational part of a new proposal for DNA sequencing denominated sequencing by hybridization. The general usage of this method for real sequencing purposes depends mainly on the development of good algorithmic procedures for solving its computational phase. The proposed genetic algorithm is a modified version of a previously proposed hybrid genetic algorithm for the same problem. It is compared with two well suited meta-heuristic approaches reported in the literature: the hybrid genetic algorithm, which is the origin of our proposed variant, and a tabu-scatter search algorithm. Experimental results carried out on real DNA data show the advantages of using the proposed algorithm. Furthermore, statistical tests confirm the superiority of the proposed variant over the state-of-the-art heuristics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN EFFICIENT CROSSOVER OPERATOR FOR TRAVELING SALESMAN PROBLEM

Crossover operator plays a crucial role in the efficiency of genetic algorithm (GA). Several crossover operators have been proposed for solving the travelling salesman problem (TSP) in the literature. These operators have paid less attention to the characteristics of the traveling salesman problem, and majority of these operators can only generate feasible solutions. In this paper, a crossover ...

متن کامل

Effect of Local Search on the Performance of Genetic Algorithm

Genetic Algorithms are biologically inspired optimization algorithms that has been used in a number of NP-hard optimization problems successfully like Travelling salesman, Knapsack problem etc. Performance of genetic algorithms largely depends on type of genetic operators Selection, Crossover, Mutation and Replacement used in it. Replacement operator decides which individuals stay in a populati...

متن کامل

Design of a Hybrid Genetic Algorithm for Parallel Machines Scheduling to Minimize Job Tardiness and Machine Deteriorating Costs with Deteriorating Jobs in a Batched Delivery System

This paper studies the parallel machine scheduling problem subject to machine and job deterioration in a batched delivery system. By the machine deterioration effect, we mean that each machine deteriorates over time, at a different rate. Moreover, job processing times are increasing functions of their starting times and follow a simple linear deterioration. The objective functions are minimizin...

متن کامل

Multi-Objective Optimization of Solar Thermal Energy Storage Using Hybrid of Particle Swarm Optimization and Multiple Crossover and Mutation Operator

Increasing of net energy storage (Q net) and discharge time of phase change material (t PCM), simultaneously, are important purpose in the design of solar systems. In the present paper, Multi-Objective (MO) based on hybrid of Particle Swarm Optimization (PSO) and multiple crossover and mutation operator is used for Pareto based optimization of solar systems. The conflicting objectives are Q net...

متن کامل

Solving Travelling Salesman Problem with an Improved Hybrid Genetic Algorithm

We present an improved hybrid genetic algorithm to solve the two-dimensional Euclidean traveling salesman problem (TSP), in which the crossover operator is enhanced with a local search. The proposed algorithm is expected to obtain higher quality solutions within a reasonable computational time for TSP by perfectly integrating GA and the local search. The elitist choice strategy, the local searc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Heuristics

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2007